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ABSTRACT

This paper describes the use of convolutional neural nets (CNN), a type of deep learning, to identify fronts

in gridded data, followed by a novel postprocessing method that converts probability grids to objects.

Synoptic-scale fronts are often associated with extreme weather in the midlatitudes. Predictors are 1000-mb

(1mb5 1 hPa) grids of wind velocity, temperature, specific humidity, wet-bulb potential temperature, and/or

geopotential height from the North American Regional Reanalysis. Labels are human-drawn fronts from

Weather Prediction Center bulletins. We present two experiments to optimize parameters of the CNN and

object conversion. To evaluate our system, we compare the objects (predicted warm and cold fronts) with

human-analyzed warm and cold fronts, matching fronts of the same type within a 100- or 250-km neigh-

borhood distance. At 250 km our system obtains a probability of detection of 0.73, success ratio of 0.65 (or

false-alarm rate of 0.35), and critical success index of 0.52. These values drastically outperform the baseline,

which is a traditional method from numerical frontal analysis. Our system is not intended to replace human

meteorologists, but to provide an objective method that can be applied consistently and easily to a large

number of cases. Our system could be used, for example, to create climatologies and quantify the spread in

forecast frontal properties across members of a numerical weather prediction ensemble.

1. Introduction

Synoptic-scale fronts are often associated with extreme

weather in the midlatitudes (e.g., Fawbush and Miller

1954;Miller 1959; Catto and Pfahl 2013).A front is a quasi-

vertical transition zone between two air masses with dif-

ferent densities (AmericanMeteorological Society 2014b).

This definition assumes that the two air masses are nearly

horizontally homogeneous internally, with a sharp density

gradient in the transition zone. It is common practice to

think of fronts as infinitesimally thin horizontal lines, lo-

cated at the warm edge of the transition zone (American

Meteorological Society 2014b). For synoptic-scale fronts,

the width of this transition zone is on the order of 100km

or less (section 9.2, Holton 2004). Thus, ‘‘synoptic-scale’’

fronts are mesoscale phenomena in the cross-front di-

rection, despite being synoptic scale (from a few hundred

to a few thousand kilometers) in the alongfront direction.

Also, though the fundamental definition involves density,

fronts are commonly defined by a thermal variable such as

(potential) temperature, wet-bulb (potential) temperature,

or equivalent (potential) temperature, as discussed later in

this section.

Air masses are generated by prolonged residence in a

source region, where they are conditioned (thermally

altered) by contact with the underlying surface. For

example, around the North Pole during winter, the at-

mosphere receives no solar radiation and continually

emits longwave radiation to space, leading to strong

cooling (Serreze et al. 2007). Meanwhile, over the

equatorial oceans, the atmosphere receives ample solar

radiation, as well as longwave radiation and water vapor
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from the underlying surface. These processes lead to

continental Arctic and maritime tropical air masses,

respectively. Air masses are often characterized by their

wet-bulb potential temperature1 uw (Hewson 1936; Low

and Hudak 1997). Wet-bulb potential temperature uw
is a good discriminator because it is conservative under

psuedo-adiabatic processes, which occur frequently

within air masses.

Numerical frontal analysis (NFA) is the processing

of grids without machine learning and dates back to

Renard and Clarke (1965, hereafter RC65), who define

the thermal front parameter [TFP; Eq. (1)]. The term t

may be any thermal variable [(potential) temperature,

wet-bulb (potential) temperature, equivalent (potential)

temperature, etc.] at one vertical level or averaged

over a layer. Here, =̂t5=t/=t is the unit vector in the

direction of the gradient:

TFP(t)52=k=tk � =̂t . (1)

Ridge lines of TFP (maxima) define the warm edge of

the frontal zone, and trough lines (minima) define the

cold edge, as shown in Fig. 1. RC65 draw these lines

manually, ignoring small regions of enhanced TFP (in

order to highlight the synoptic scale). Their thermal

variable t is u850.

Clarke and Renard (1966, hereafter CR66) introduce

the first thermal front locator, defined in Eq. (2):

TFL
1
(t)5=t � =̂TFP(t) . (2)

TFL1 is the thermal gradient in the direction of the TFP

gradient, from the cold side toward the warm side of the

FIG. 1. Schematic for TFP calculation [Eq. (1)]. The variable t increases gradually with x,

except in the middle of the domain (frontal zone), where it increases sharply with x. Both the first

and second derivatives have their greatest magnitude at the edges of the frontal zone, so TFP has

its greatest magnitude at the edges of the frontal zone. At the warm edge, the first and second

derivatives have opposite sign, so TFP reaches its most positive value here. At the cold edge, the

first and second derivatives have the same sign, so TFP reaches its most negative value here.

1 This and other atmospheric variables are defined in Table 1.

Henceforth, if we use a mathematical variable without definition in

the main text, it is defined in Table 1.
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frontal zone. The zero contour of TFL1 defines the edges

of the frontal zone. Their thermal variable t is T850.

Huber-Pock and Kress (1981, hereafter HPK81) in-

troduce the second thermal front locator (TFL2), de-

fined in Eq. (3):

TFL
2
(t)5=TFP(t) � =̂t . (3)

TFL2 is the TFP gradient in the direction of the thermal

gradient, whereas TFL1 is the thermal gradient in the

direction of the TFP gradient. Again, the zero contour

defines the edges of the frontal zone. HPK81 use a very

different thermal variable than earlier studies: DZ(Te),

defined in Table 1. Also, they impose the criterion that

the magnitude of the cross-front thermal gradient must

exceed that of the alongfront gradient.

Hewson (1998) summarizes and codifies a lot of earlier

work in NFA, including RC65, CR66, and HPK81.

Specifically, they distill the process into the applica-

tion of a single locating variable (e.g., the TFP, TFL1,

or TFL2) and one or more masking variables. The

‘‘masking variables’’ are simply additional criteria,

such as minimum frontal-zone area, minimum front

length, minimum jj=tjj or TFP, etc. The generic pro-

cess is shown in their Fig. 2. This framework has been

used in most studies of NFA (Table 2).

Simmonds et al. (2012) develop the ‘‘wind-shift

method,’’ which they find to match human analyses

better than the ‘‘thermal method’’ (Hewson 1998) in

the Southern Hemisphere. Specifically, the wind-shift

method classifies a grid cell as frontal if, within the last

six hours, 1) its wind direction has changed from the

northwest quadrant to the southwest quadrant and 2) its

meridional wind component y has increased by.2ms21.

These criteria are applied to wind fields at 10m above

ground or 850mb (1mb 5 1hPa). Schemm et al. (2015)

compare the thermal and wind-shift methods, concluding

that although the wind-shift method is better at detecting

fronts with weak baroclinicity (e.g., those induced by

wind shear and convergence between two anticy-

clones), the thermal method is better at detecting

warm fronts (which are almost never detected by the

wind-shift method).

Machine learning (ML) is a process whereby com-

puters learn autonomously from data, as opposed to

an expert system like NFA, which is based on human-

derived rules. Deep learning (DL) is a subset of ML,

which offers the ability to encode the input data at

various levels of abstraction. These abstractions are

called features, and DL autonomously learns the best

way to encode features (that which maximizes

predictive skill).

Convolutional neural networks (CNN), a common type

of DL model, are specially designed to learn from data

with topological structure, such as spatial grids. Although

they were introduced in the early 1980s (Fukushima and

Miyake 1982), CNNs (and DL in general) remained ob-

scure until just a few years ago. One reason is that until

recently most people did not have the computing

power needed to train DLmodels. Second, DLmodels

often have very many weights (millions or tens of

millions; e.g., Krizhevsky et al. 2012, Chollet 2017),

TABLE 1. Glossary.

Term Units Definition

NF — No-front label. A grid cell labeled NF is not intersected by a front.

WF — Warm front label. A grid cell labeled WF is intersected by a warm front.

CF — Cold front label. A grid cell labeled CF is intersected by a cold front.

T kelvins (K) Temperature

q kg kg21 Specific humidity

u m s21 Zonal wind speed

y m s21 Meridional wind speed

Z meters above sea

level (m MSL)

Geopotential height

p Pa Pressure

u K Potential temperature

uw K Wet-bulb potential temperature. This is the temperature that an air parcel would reach if it

were brought adiabatically to saturation (e.g., by lifting to its condensation level), then

adiabatically compressed or expanded to 1000mb (American Meteorological Society

2014c).

T1000, q850, etc. — The subscript is pressure level in millibars (mb).

T10002700, q8502500, etc. — Mean value between two pressure levels, given in the subscript in millibars.

Te K Adiabatic equivalent temperature (American Meteorological Society 2014a)

DZ(Te) m Equivalent thickness. Same as thickness, except that in the hypsometric equation

(AmericanMeteorological Society 2014d) virtual temperature is replaced by Te, which is

conserved during psuedo-adiabatic motion within the layer.
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which makes overfitting likely without a very large

amount of training data. This problem has been alle-

viated by the availability of more data and dropout

regularization (Hinton et al. 2012; Baldi and Sadowski

2013). Third, neural networks (including CNNs) of-

ten have many layers, which leads to the vanishing-

gradient problem. Specifically, training a neural net-

work involves computing the gradient of each weight

with respect to the error [backpropagation; section

4.5.2 in Mitchell (1997)]. Most gradients are the

product of other gradients, which tend to be small

(�1), and the number of gradients in the product in-

creases with the number of layers. When enough small

values are multiplied together, the product can be-

come indistinguishable from zero (numerical under-

flow), causing the gradient to ‘‘vanish’’. This problem

has been alleviated by the rectified linear activation

function (Nair and Hinton 2010) and batch normali-

zation (Ioffe and Szegedy 2015).

CNNs have recently been applied to meteorology

problems such as estimating sea ice concentration

(Wang et al. 2016), detecting extreme weather in cli-

mate models (Racah et al. 2017; Kurth et al. 2018),

detecting synoptic-scale fronts in weather models

(Kunkel et al. 2018), approximating an entire global

circulation model (Scher 2018), estimating tropical

cyclone intensity (Wimmers et al. 2019), replacing

subgrid-scale parameterizations in a climate model

(Rasp et al. 2018), and forecasting tornadogenesis

(McGovern et al. 2019, manuscript submitted to Bull.

Amer. Meteor. Soc.) and large hail (Gagne et al. 2019).

Also, Reichstein et al. (2019) and Gil et al. (2019) have

FIG. 2. Architecture of a CNN. The input (at top left) is a 333 33 grid of 4 variables (1000-mb temperature, specific humidity, u wind,

and y wind).Wind barbs are shown in gray, and uw (which is a function of both temperature and humidity) is shown in the yellow-to-red fill.

In the feature maps produced by convolution and pooling layers, negative values are in blue and positive values are in red. The first

convolution layer transforms the 4 variables into 32 filters; the second convolution layer transforms these into 32 new filters; and the first

pooling layer downsamples the 32 feature maps to half-resolution. These three layers form a ‘‘convolution block,’’ and the next two

convolution blocks perform similar operations. Feature maps from the last pooling layer (4 rows3 4 columns3 128 filters) are flattened

into a vector of length 2048. These 2048 features are passed through two dense layers, which transform them into 128 intermediate features

and then 3 predictions (probabilities of no front, warm front, and cold front).
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recently called for a vast expansion of our efforts to

incorporate deep learning into geoscience.

Section 2 describes CNNs, our chosen DL model;

section 3 describes our input data and preprocessing;

section 4 describes postprocessing and evaluation of the

CNN predictions; section 5 describes our experimental

setup; and section 6 discusses the results.

2. Convolutional neural networks

The main components of a CNN (Fig. 2) are con-

volutional, pooling, and dense layers. Each convolu-

tional layer passes many convolutional filters (Fig. 3)

over the input maps, producing one output map for each

filter. The input and output maps—more generally,

spatial grids at any layer in a CNN—are called feature

maps. The output maps are then passed through an ac-

tivation function, which must be nonlinear. Otherwise,

the network would learn only linear relationships, be-

cause convolution is a linear operation and any series of

linear operations is still linear. Convolution is formu-

lated precisely by Eq. (4):

X
(k)
i 5 f

(
�
J

j51

W
(j,k)
i *X

(j)
i21 1 b

(k)
i

)
, (4)

where X
(j)
i21 is the jth feature map in the (i2 1)th layer;

X
(k)
i is the kth feature map in the ith layer; W

(j,k)
i is the

convolutional filter connecting X
(j)
i21 and X

(k)
i ; J is

the number of feature maps in the (i2 1)th layer; b
(k)
i is

the bias for the kth feature map in the ith layer; and f

is the activation function. The terms X
(j)
i21 and X

(k)
i are

matrices with the same dimensions (e.g., 333 33 for the

first convolutional layer in Fig. 2), while W
(j,k)
i typically

has smaller dimensions (Fig. 3). The activation function

acts independently on each element of the matrix. We

use the rectified linear unit (ReLU; Nair and Hinton

2010), which is a common activation function in the ML

literature.

All convolutional filters in the network have differ-

ent weights (W
( j,k)
i and b

(k)
i ), which is ensured by random

initialization. This allows different filters to detect dif-

ferent features. As shown in Fig. 2, some filters respond

strongly to thermal gradients, while others respond

strongly to wind shifts. In reality, since convolution is

performed over all input channels, the features detected

aremultivariate. For example, the first convolution layer

convolves over the four original variables—tempera-

ture, specific humidity, u wind, and y wind—while the

second convolves over the 32 channels produced by the

first. During training, the weights are updated by gra-

dient descent [Eq. (5)] to minimize the error or ‘‘loss’’ �.

Here � is computed for the last batch of examples pre-

sented to the model, and a is the learning rate:8>>>><
>>>>:

W
(j,k)
i )W

(j,k)
i 2a

›�

›W
(j,k)
i

b
(k)
i )b

(k)
i 2a

›�

›b
(k)
i

. (5)

Our loss is cross entropy [Eq. (6)], which is common

for classification tasks. Here, N is the number of exam-

ples; K is the number of classes; pik is the predicted

probability that the ith example belongs to the kth class;

and yik is the true label, which is 1 if the ith example

belongs to the kth class and 0 otherwise. Cross entropy

varies across [0, ‘); lower is better:

�52
1

N
�
N

i51
�
K

k51

y
ik
log

2
(p

ik
) . (6)

TABLE 2. Previous work in numerical frontal analysis. TFP is the thermal front parameter [Eq. (1)]; TFL1 and TFL2 are thermal front

locators [Eqs. (2) and (3)]; and subscripts on thermal variables are pressure levels in millibars (except ‘‘10m’’, which is 10m

above ground).

Reference Locating variable Domain Grid spacing

Renard and Clarke (1965) TFP(u850) Most of Northern Hemisphere 381 km

Clarke and Renard (1966) TFL1(T850), Most of Northern Hemisphere 381 km

TFP(u850),

TFP(u1000),

TFP(u10002700)

Huber-Pock and Kress (1981) TFL2[DZ(Te)] Unknown Unknown

Serreze et al. (2001) TFP(T850) North of 308N 2.58
Jenkner et al. (2010) TFP(ue700) South-central Europe 7 km

Hewson (1998) Many North Atlantic, western Europe, extreme

eastern North America

;100 km

Berry et al. (2011) TFP(uv850
) Global 2.58

Simmonds et al. (2012) v10m, v850 Most of Southern Hemisphere 1.58
Catto and Pfahl (2013) TFP(uw850

) 608S–608N 2.58
Schemm et al. (2015) TFP(ue850), v10m Global 18
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Each pooling layer moves a window over the input

map and, at each position of the window, takes the

maximum or mean inside the window (Fig. 4). This

reduces the image size (number of grid cells) without

changing the image domain; in other words, pooling

reduces the image resolution (generally by half). For

example, inputs to the first pooling layer in Fig. 2 have

32-km grid cells (same as the NARR), while outputs

have 64-km grid cells. Pooling layers do not change the

number of channels (e.g., the first pooling layer in Fig. 2

takes in 32 channels and outputs 32 channels). Re-

ducing the image resolution allows deeper convolution

layers (farther to the right in Fig. 2) to learn larger-

scale features. This is one reason that deeper layers

learn higher-level abstractions; the other is that feature

maps at deeper layers have passed through more non-

linear transformations.

Finally, the dense layers transform feature maps into

predictions. Since dense layers ignore spatial structure,

before passing feature maps to the dense layers, it is

common practice to flatten them into a vector—as in

Fig. 2, where the 43 43 128 grid is flattened to a vector

of length 2048. A traditional neural net (TNN; Haykin

2001) consists of many dense layers (called ‘‘hidden

layers’’ in the TNN literature), with no convolution or

pooling layers. Thus, including dense layers in a CNN is

equivalent to appending a TNN after the convolution

and pooling layers. These spatially aware layers detect

important spatial features, and the dense layers trans-

form these features into predictions.

To train a TNN with spatial grids, the scalar features

must be decided a priori. Some examples are raw

gridpoint values (i.e., flatten the grid into a vector and

let each element be one feature), summary statistics

(e.g., mean and standard deviation for each channel),

and principal component loadings. The advantage of a

CNN is that it learns simultaneously the best feature

representation and the best mapping from features to

predictions.

Weights in the dense layers are learned by gradient

descent [Eq. (5)], simultaneously with those in the

convolution layers. In this work, the activation function

is softmax [section 21.5 in Russell andNorvig (2010)] for

FIG. 3. Convolution. (a) Input map, with position of the filter

highlighted in blue. (b) The convolutional filter. (c) Output map,

with the same filter position highlighted in blue. Convolution is

elementwise multiplication of the highlighted values in (a) with

those in the filter, yielding the pink ‘‘0’’ in (c). Inputs [the numbers

in (a) and (b)] were chosen arbitrarily. For the sake of simplicity,

this example assumes one input map, one output map, and no ac-

tivation function. If the activation function were ReLU, negative

values in the output map in (c) would be set to zero, while non-

negative values would be unchanged. (This figure is part of an

animation shown in Fig. S1 in the online supplemental material.)

FIG. 4. Maximum pooling. (a) Input map, with position of the

pooling window highlighted in blue. (b) Output map, with the re-

sulting value highlighted in blue. This value is obtained by taking the

maximum of highlighted values in (a). The other option is average

pooling, whichwould cause the top row of the outputmap to become

(1:75, 1, 21:75); the bottom row would be (20:75, 21, 0:5). (This

figure is part of an animation shown in Fig. S2.)
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the last dense layer and ReLU for the others. Softmax

ensures that all three outputs are in the range [0, 1]

and sum to 1.0, which allows them to be interpreted as

probabilities. To our knowledge, no other activation

function is appropriate for classification with more than

two classes. Equation (6) compares softmax-generated

probabilities to the true labels, yielding the loss for

gradient descent.

3. Input data and preprocessing

Labels (or ‘‘ground truth’’) come from the Weather

Prediction Center (WPC) surface bulletins (National

Weather Service 2007). These bulletins are produced

every three hours and contain a set of polylines, each

demarcating a front (Fig. 5). WPC labels are generally

on the synoptic scale (e.g., only 7% of warm fronts and

3% of cold fronts are shorter than 200 km), which fits

the goal of this project. Also, when fronts are short it is

often because several nearly collinear fronts are drawn

through the same thermal transition zone (e.g., cold

fronts in the eastern United States in Figs. 5b,c).

The WPC labels are created by human meteorolo-

gists, which introduces two types of inconsistency. The

first is intrapersonal, where the same meteorologist ap-

plies different rules (definition of a front) to each case.

The second is interpersonal, where different meteorol-

ogists have different rules. As a result, the WPC labels

sometimes undergo dramatic morphological changes,

or disappear and reappear, between successive time

steps (e.g., Fig. 5). These issues notwithstanding, we use

human labels rather than ones created by an algorithm

such as NFA (section 1), because these algorithms have

their own errors, which tend to be more simple and

systematic. For example, Schemm et al. (2015) find that

the thermal method rarely detects fronts with weak

baroclinicity, while the wind-shift method rarely de-

tects warm fronts. These biases would be easy for a

CNN to mimic, which is tantamount to overfitting pe-

culiarities of the training data. Since the WPC labels

FIG. 5.WPC fronts from 0000 to 0600UTC 8Dec 2017.Gray vectors are wind barbs; the color fill is wet-bulb potential temperature (8C);
light blue triangles are cold fronts; and dark blue circles are warm fronts. (a)–(c) The 1000-mb fields, determined to be the best vertical level

for CNN-training (see discussion in section 5a). (d)–(f) Surface fields, on which the WPC bulletins are explicitly based. The letters ‘‘H’’ and

‘‘L’’ indicate analyzed low and high pressure centers, respectively, in the WPC bulletins. These examples show that the WPC dataset has

temporal inconsistencies in both frontal existence (e.g., cold fronts in the Pacific) and morphology (e.g., warm front in central Canada).
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are created by several humans, each with different

tendencies, this dataset is much harder to overfit.

Another disadvantage of human labels is that they are

expensive, because they require labor from people with

rare expertise. Our labels already existed, but in general

this is a problem for supervised ML (the type where

correct answers are needed for training). When human

labels are unavailable the best option may be labels

from a set of algorithms with different biases (e.g., the

thermal and wind-shift methods discussed in Schemm

et al. 2015).

Predictors come from the North American Regional

Reanalysis (NARR; Mesinger et al. 2006), which outputs

data every three hours (synchronously with the WPC

bulletins) on a 32-km grid. The 32-km spacing is ade-

quate for merely detecting synoptic-scale fronts, but

frontal zones are often narrower than 64 km (two grid

lengths) (Roeder and Gall 1987), which hinders accu-

rate placement. However, given the errors in the WPC

dataset (Fig. 5), we do not think that higher-resolution

data would provide any benefit. The NARR covers

both the spatial extent (Fig. 6) and time span (Table 3)

of the WPC bulletins. However, as shown in Figs. 6a,b,

most WPC fronts are near the North American conti-

nent, which is a small subset of the NARR domain.

Thus, we mask out grid cells with,100 WPC fronts, as

shown in Fig. 6c. No masked grid cell is ever used as the

center of a training example (one of the ‘‘M3N3P

images’’ described later in this section and shown at the

top left of Fig. 2). The same applies for validation and

testing.

The time period is split into training, validation, and

testing. The role of training data is to fit the model (i.e.,

adjust the weights); the role of validation data is to

compare models with different settings on unseen data

and choose the best one; and the role of testing data is

to provide an independent assessment of model per-

formance on unseen data (used to neither fit nor vali-

date the model). The main requirement of the three

datasets is that they be statistically independent. For

example, if the data were split randomly, an example

from 0300 UTC today could fall into the training set,

with 0600 UTC in the testing set. These data would

probably be highly correlated (fronts usually do not

evolve much in three hours), so the testing set would

not provide an independent assessment of perfor-

mance. With this in mind, we split the data as shown in

Table 3, with a one-week gap between datasets.

We rotate the horizontal wind (u and y) from

Earth relative to grid relative. Grid coordinates and

wind coordinates should be the same, so that the rela-

tive orientation of wind vectors and thermal or height

gradients are easier to infer. Perhaps the models could

have learned equally well from Earth-relative winds,

but this would be nontrivial, since the rotation angle is

different at each grid cell.

To match the labels with predictor variables, we

convert theWPC fronts from polylines to images on the

NARR grid. The label at each grid cell—no front (NF),

warm front (WF), or cold front (CF)—is based on the

type of front intersecting it. This conversion resolves a

problem inherent to polylines: they depict fronts as

infinitesimally thin. However, there is still a represen-

tativity error due to the NARR’s finite grid spacing. If a

polyline intersects grid cell p near its edge with grid cell

q, q will not be labeled as part of the front, even though

it is probably in the frontal zone. To account for this

error, we dilate fronts via the following procedure at

each time step (Figs. 7a,b). Class frequencies before

and after dilation are shown in Table 4.

1) Dilate each WF grid cell (i, j), using eight-

connectivity. This means that all vertical, horizon-

tal, and diagonal neighbors of (i, j) take the label

WF. Eight-connectivity with 32-km spacing is

equivalent to a ;50-km buffer.

2) Dilate all CF grid cells, using the same method.

3) For any grid cell labeled both WF and CF, replace

with the nearest frontal label (WF or CF) in the

undilated image. In case of a tie, the grid cell is labeled

CF (the more common label in the undilated dataset).

For example, this step is applied at both ends of the

cold front from Lake Superior to western Québec in
Figs. 7a and 7b.

Each training example consists of anM3N3P image

(top left of Fig. 2) and scalar target value. The variables

M, N, and P are the number of rows, columns, and pre-

dictor variables in the image, respectively. The target

value is the true label (NF, WF, or CF) after dilation at

the center of theM3N grid. TermsM and N are always

odd, so that there is a grid cell exactly at the center. Each

predictor variable is normalized by Eq. (7). Here x0i,j and
xi,j are the normalized and unnormalized values of pre-

dictor x at grid cell (i, j), respectively; and xp1 and xp99 are

the 1st and 99th percentiles of unnormalized x values in

the NARR grid at the same time, respectively.We do not

use the strictminimumandmaximum, because this would

allow outliers (which may be erroneous) to unduly in-

fluence the normalization. Equation (7) normalizes each

variable to ;[0, 1]:

x0i,j 5
x
i,j
2 x

p1

x
p99

2 x
p1

. (7)

In a separate experiment (not shown) we normalized the

images with a static xp1 and xp99 (one for each predictor,
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rather than one for each predictor and time step). How-

ever, this worsened model performance. For thermal

variables (T, q, and uw), using a different xp1 and xp99 at

each time step emphasizes thermal gradients in the

summer, because there is less variation over the

Northern Hemisphere, so the denominator in Eq. (7)

is smaller. We hypothesize that this works better

because it matches the way meteorologists think.

During the summer, when thermal gradients are

weaker, meteorologists are more ‘‘generous’’ in la-

beling fronts (the required thermal gradient is

smaller).

4. Postprocessing and model evaluation

a. Gridcell-wise evaluation

In gridcell-wise evaluation the probability grid

(Fig. 8a) is compared, grid cell by grid cell, with the

target grid (containing true values). This type of evalu-

ation has fallen out of favor in meteorology, because it

unduly punishes slight offsets between the predictions

and observations. For example, in Fig. 7c, the predicted

front is shifted one grid cell to the north and east of

the observed front, causing all grid cells in the pre-

dicted front to be counted as false positives and all

those in the observed front to be counted as false

negatives. This effect unduly punishes an otherwise-

perfect prediction. However, for all training, valida-

tion, and testing, the target grids are dilated as in

section 3. Probability grids need not be explicitly

dilated, because the models are trained with dilated

target grids, so dilation is automatically built into the

predictions. Since dilation corresponds to a ;50-km

TABLE 3. Temporal data coverage (at the time we began

experiments).

Dataset Time period

NARR 0000 UTC 1 Jan 1979–2100 UTC 31 Dec 2017

WPC fronts 1500 UTC 5 Nov 2008–1200 UTC 18 Jan 2018

Training period 1500UTC 5Nov 2008–2100UTC 24Dec 2014

Validation period 0000 UTC 1 Jan 2015–2100 UTC 24 Dec 2016

Testing period 0000 UTC 1 Jan 2017–2100 UTC 31 Dec 2017

FIG. 6. Spatial coverage of WPC fronts.

(a) Number of warm fronts in each grid cell, after

dilation (Fig. 7), from 1500 UTC 5 Nov 2008 to

2100 UTC 31 Dec 2017. (b) As in (a), but for cold

fronts. (c) The resulting mask. Grid cells with

$100 fronts [sum of (a) and (b)] are unmasked and

in green. All other grid cells are masked and

in white.
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buffer, gridcell-wise evaluation with dilation is simi-

lar to neighborhood evaluation with a 50-km neigh-

borhood distance, which does not unduly punish slight

offsets (Fig. 7d).

The performance metrics used for this study (appendix)

are based on the contingency table (Table 5), which re-

quires deterministic predictions.However, our CNNs (like

most ML models for classification) output probabilities.

Thus, we determinize the probabilistic predictions via

the following procedure, illustrated in Figs. 8a,b.

1) Round all NF (no front) probabilities in the vali-

dation set to the nearest 0.001 and create an array of

unique values. This eliminates very similar values

and reduces the amount of computation required in

step 2.

FIG. 7. Dilation and its role in gridcell-wise evaluation. (a) Undilated and (b) dilatedWPC fronts at 0000 UTC

1 Dec 2017. Warm fronts are in red, and cold fronts are in blue. Dark lines are WPC fronts, and light shading

shows NARR grid cells intersected by the fronts before and after dilation. (c) Observed and predicted front

without dilation; (d) with dilation. Grid cells intersected by only the predicted front (gray) are counted as false

positives; those intersected by only the observed front (light pink) are counted as false negatives; those inter-

sected by both (dark pink) are counted as true positives.
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2) For each value pNF* in the unique array, apply Eq. (8).

Here pNF, pWF, and pCF are predicted probabilities

of the three classes; P is the resulting deterministic

prediction:

P5

8><
>:

NF, p
NF

$ p
NF
* ; otherwise:

CF, p
CF

$ p
WF

WF, p
CF

, p
WF

. (8)

The threshold pNF* is applied to the NF class be-

cause, due to the imbalance in class frequencies

(Table 4), models generally produce higher pNF than

pWF or pCF. For example, if the threshold were ap-

plied to pWF, the second line of Eq. (8) would be

‘‘NF, pNF$ pCF’’, leading to very few deterministic CF

predictions. If the threshold were applied to pCF, the

second line would be ‘‘NF, pNF $pWF’’, leading to very

fewdeterministicWFpredictions. Thus, thebest strategy

is to determine if there is any front [first line of Eq. (8)],

then determine its type by comparing pWF and pCF.

3) Find the optimal pNF* , which is the one that produces

the highest Gerrity score [Eq. (A4), used for reasons

discussed later in this section]. The optimal threshold

is based on validation data, and the same threshold is

used later on testing data.

Deterministic predictions from step 3 are used to create

contingency tables, which are used to compute accuracy

[Eq. (A1)], the Heidke score [Eq. (A2)], Peirce score [Eq.

(A3)], and Gerrity score [Eq. (A4)]. Accuracy varies from

[0, 1]; theHeidke score varies from (2‘, 1]; and the Peirce
andGerrity scores vary from [21, 1]. Higher is better in all

cases. For the Heidke, Peirce, and Gerrity scores, 0.0 in-

dicates no skill. The loss function used during training [Eq.

(6)] and performance metrics used after training are dif-

ferent, because the former evaluate probabilities and the

latter evaluate deterministic predictions. The performance

metrics would make poor loss functions, because com-

puting pNF* after each weight update would be expensive

and determinizing the predictions would make derivatives

in Eq. (5) hard to define.

The main disadvantage of accuracy is that for rare

events it can be ‘‘played’’ by always predicting the ma-

jority class. For this study, a model that always predicts

TABLE 4. Class frequencies before and after dilation (section 3)

for the study period (1500 UTC 5 Nov 2008–2100 UTC 31 Dec

2017). Each value is the average number of NARR grid cells at one

time intersected by no front (NF), a warm front (WF), or a cold

front (CF).

Class Before dilation After dilation

NF 99.66% 98.95%

WF 0.09% 0.27%

CF 0.25% 0.78%

FIG. 8. Conversion of probability grids

to objects at 0000 UTC 25 Jan 2017.

(a) WF probabilities (red) and CF prob-

abilities (blue) from the CNN. (b) Frontal

regions (red for WF, blue for CF) after

determinization with pNF* 5 0:411 in Eq. (8).

(c) Same but after throwing out small con-

nected regions (area , 0.3 million km2).

(d) Skeleton lines. (e) Main skeleton

lines, with Lstraight (defined in section 4b)

of 400 km.
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NF would have 98.95% accuracy, as shown in Table 4.

The Heidke and Peirce scores measure the fraction

of correct predictions, excluding those that would

arise from random and climatological guessing, re-

spectively. Their main disadvantage is that the ran-

dom and climatological baselines are naïve and easily

outperformed. Finally, the Gerrity score is equitable

(gives random and constant predictions a score of

0.0) and rewards correct predictions of the minority

classes (WF and CF) more than the majority class

(NF). This second property means that, unlike the

Heidke and Peirce scores, the Gerrity score does not

reward conservative prediction (‘‘erring on the side

of the majority class’’). This is why we use the Gerrity

score in step 3 of the determinization procedure. This

causes the CNNs to overpredict fronts, as manifested

in the large frontal regions shown in Fig. 8b. How-

ever, this overprediction is mitigated by object con-

version (section 4b), especially the skeletonization

step (Fig. 8d).

b. Converting probability grids to objects

The probability grids have two disadvantages.

First, the apparent frontal zones are unusually wide

(Fig. 8b). This can be mitigated by decreasing the de-

terminization threshold [pNF* in Eq. (8)], but at the cost

of creating many small and nonconnected frontal

zones, which is also undesirable. Second, humans

generally think of fronts as objects rather than grids,

so a useful front-detection algorithm would produce

explicit objects, like most NFA methods discussed in

section 1. We use the following procedure to achieve

this.

1) Convert the images to connected regions. A con-

nected region is a set of eight-connected WF or CF

grid cells, with ‘‘eight-connectivity’’ defined as in

section 3. Although this does not change the appear-

ance of the map (Fig. 8b), it changes the internal

representation from a grid to a collection of objects.

2) Throw out small frontal regions (with area below a

threshold; Fig. 8c). Small regions are less likely to

represent synoptic-scale fronts and more likely to be

false alarms.

3) Reduce each region to a one-gridcell-wide skeleton

(Fig. 8d). This is done by morphological thinning,2 a

common image-processing algorithm.

4) The resulting skeletons are usually complex polylines

(with more than two endpoints) and often havemuch

more complicated shapes than human-analyzed fronts.

Thus, we split each skeleton into simple skeletons and

find the main skeleton. A ‘‘simple skeleton’’ is a simple

polyline contained entirely within, and connecting two

endpoints of, the original skeleton. For a skeleton with

K endpoints, there are (1/2)K(K2 1) simple skeletons.

The ‘‘main skeleton’’ is that with the greatest adjusted

length, defined in Eq. (9). Here, Lstraight is the

distance between the two endpoints; Lint is the

integrated length of the polyline (the sum of all

line segments); and S5Lint/Lstraight is the sinuosity.

Dividing by sinuosity discourages complicated

shapes, such as ‘‘V’’ shapes, which occur frequently

and do not resemble human-analyzed fronts. Before

computing Ladj for each simple skeleton, we throw

out those with Lstraight ,L*
straight

, where L*
straight

is a

user-selected parameter:

L
adj

5
L

straight

S
5

L2
straight

L
int

. (9)

Objects produced by step 4 (Fig. 8e) are considered

‘‘predicted fronts.’’

c. Object-based evaluation

Object-based evaluation compares actual (WPC)

fronts with predicted fronts, using a neighborhood

distance.3 Warm fronts can be matched only to other

TABLE 5. Contingency table for three-class prediction; nij is the

number of examples where the ith class is predicted and the jth

class is observed. In a perfect contingency table, nij 5 0 if i 6¼ j.

Observed

Predicted NF WF CF

NF n11 n12 n13

WF n21 n22 n23

CF n31 n32 n33

TABLE 6. Parameters for Experiment 1 (CNN-training). The

pressure level for all predictor variables is 1000mb, and the ‘‘image

size’’ is the spatial dimensions of each input example.

Parameter Values

Predictor variables u, y, and uw
u, y, T, and q

u, y, uw, T, and q

u, y, uw, and Z

u, y, T, q, and Z

u, y, uw, T, q, and Z

Image size 9 3 9, 17 3 17, 25 3 25, 33 3 33

Dropout fraction 0.25, 0.5

2 https://scikit-image.org/docs/dev/api/skimage.morphology.

html#skimage.morphology.thin.
3 The distance between two fronts is defined as the median dis-

tance, over all points P in one front, between P and the nearest

point in the other front.
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warm fronts, and likewise for cold fronts. A key differ-

ence between object-based and gridcell-wise evaluation

is that in the latter, because each example is one grid cell

and all grid cells are classified in both the actual and

predicted datasets, ‘‘negative examples’’ (NF grid cells)

are well defined. In object-based evaluation there are

only WF and CF objects, no NF objects, so ‘‘negative

examples’’ are undefined. Most three-class performance

metrics, including those used in section 4a, break down

in this setting. However, some two-class performance

metrics can still be computed; for example, Eqs. (A5)–

(A8) are used by the National Weather Service to verify

tornado warnings (page 1, Brooks 2004), another setting

in which negative examples (‘‘nontornadoes’’) are dif-

ficult to define.

5. Experimental setup

a. Experiment 1: CNN experiment

This experiment determines the best input data and

CNN architecture for gridded classification. Specifically,

we try all 48 combinations of the parameters listed in

Table 6. The predictor variables always include u and y,

because otherwise the model identifies many stationary

fronts, which are generally not labeled in the WPC data

and therefore count as false alarms. Predictors may also

include the fundamental thermal variables (T and q), uw
(which combines information from T and q), and/or Z

(because fronts are often collocated or nearly collocated

with a height trough). When predicting the label for a

training example, d3 100% of dense-layer weights are

omitted, where d is the dropout fraction. This forces

dense-layer weights to adapt more independently of

each other, which reduces overfitting. Dropout is not

used for validation or testing.

The number of filters in the first convolution block

(Fig. 2) is always 8 3 the number of predictor variables

(we have found subjectively that this works well for

many problems). The number of filters doubles with

each successive convolution block, which is a common

practice. The number of convolution blocks is two for

images smaller than 25 3 25 (three otherwise). For

smaller images, three blocks would cause the last feature

maps to be 1 3 1 or 2 3 2, thus not containing enough

information to make skillful predictions. Image sizes

themselves are chosen to determine how much local

context is needed to label the center grid cell. We cap

image size at 333 33 (1056 km3 1056km), because data

over 500 km away should not be needed to make this

decision. Also, in preliminary work larger images often

caused theCNN to collapse, as it does for 333 33 images

with six predictors (see discussion in section 6a).

Each model is trained for 100 epochs, with 32 batches

per epoch, each containing 1024 examples (e.g., the

top-left panel of Fig. 2 is one example). Training data

are downsampled: each batch contains 512 NF, 256WF,

and 256 CF examples. Because 98.95% of examples

are NF (Table 4), without downsampling the model

has little incentive to predict any label other than

NF. Downsampling is used only for training, not for

validation or testing. Thus, in validation and testing

the class frequencies are approximately as listed in

Table 4.

The weight update [Eq. (5)] is performed for one

batch at a time. The 1024 examples are randomly

drawn from 128 times in the training period. Including

many examples and many times makes the batch di-

verse, which prevents overfitting. As a counterexam-

ple, suppose that each batch contained examples from

only one time. At 0000 UTC (Fig. 5a) the model would

have to learn that there are no fronts in the Pacific; at

0300 UTC (Fig. 5b) it would have to learn that there

are two cold fronts here; and at 0600 UTC (Fig. 5c) it

would have to relearn that there are no fronts. This

would make training unstable (weights would oscil-

late rather than converge). We chose 100 epochs and

32 batches per epoch because we found that this is

more than enough time for convergence.

All predictors are taken from the 1000-mb pressure

level. In an earlier experiment (not shown) we trained

CNNs with similar architectures on fields at 900mb,

950mb, 1000mb, and the surface.4 The 1000-mb model

achieved the best validation Gerrity scores. Finally, all

TABLE 7. Parameters for Experiment 2 (object conversion). Determinization thresholds are at intervals of 0.05 around the best threshold

for gridcell-wise prediction (0.411), found in Experiment 1.

Parameter Values

Determinization threshold [pNF* in Eq. (8)] 0.261, 0.311, 0.361, 0.411, 0.461, 0.511, 0.561, 0.611, 0.661, 0.711, 0.761, 0.811

Minimum region area (3106 km2) 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

Minimum front length (km) (L*
straight

in section 4b) 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000

4Heights were 2m above ground level (m AGL) for tempera-

ture, specific humidity, and uw; 10m AGL for wind; and 2m AGL

for pressure. We replaced geopotential height with pressure in

these CNNs.
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models use L2 regularization for the convolutional

layers, with a strength of 0.001. This adds 0:001w to the

loss function for each weight w [element of W
(j,k)
i in

Eq. (4)], leading to fewer large weights, a simpler model,

and less overfitting. We have found subjectively that

0.001 works well for many problems.

This experiment has many fewer trials (48) than

Experiments 2 and 3 (1200 and 3600, respectively),

because training CNNs is more computationally ex-

pensive. Training one CNN takes ;48 h on seven

CPU cores.

b. Experiment 2: Object-conversion experiment

This experiment finds the best object-conversion

parameters for the best CNN from Experiment 1.

Specifically, we try all 1200 combinations of the

FIG. 9. Numerical frontal analysis at 0000 UTC 25 Jan 2017. (a) Original NARR fields at 900mb (formatted as

in Fig. 5). (b) NARR fields after Gaussian smoothing with 32-km radius. (c) TFP [Eq. (1)]. (d) Locating variable

[Eq. (10)]. (e) Front labels (red for warm front, blue for cold front, FP5 96 in section 5c). (f) As in (e), but after two

iterations of binary closing.
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parameters listed in Table 7, which are explained in section

4b. Object conversion is completely determined by the

parameters in Table 7 and, unlike a CNN, does not involve

learned weights. Thus, the object-conversion experiment

requires only validation and testing data, no training data.

We find the best parameters, that is, those yielding the

highest critical success index [CSI; Eq. (A8)] on validation

data (Table 3). This experiment uses only the best CNN

from Experiment 1, rather than all CNNs, which would be

too computationally expensive. Creating a full prediction

grid, with one classification for each of the 41591 un-

masked NARR grid cells, takes 5–10min per CNN.

We use CSI to select the best parameters because, as

noted in section 4c, correct nulls do not exist in the object-

based setting, which limits the number of performance

metrics that can be computed. Among those that can still

be computed are POD, success ratio, frequency bias, and

CSI [Eqs. (A5)–(A8)]. POD can be trivially optimized by

predicting a front everywhere; success ratio can be trivially

optimized by never predicting a front; and frequency bias

can be perfect (1.0) even if both the PODand success ratio

are very low. CSI is the only one of these metrics that

cannot be trivially optimized, because perfect CSI requires

perfect POD and success ratio (as shown in Fig. 13).

c. Experiment 3: Baseline experiment

The purpose of this experiment is to provide a

non-ML baseline against which to compare our

model. This is motivated by the belief that using ML

rather than expert systems (such as NFA), which are

generally easier to understand, should be justified by

superior performance. To our knowledge, none of

the previous work in NFA (section 1) includes ob-

jective evaluation on a large number of examples;

most include subjective evaluation on only a few case

studies. Thus, we develop our own NFA method,

which is similar to those developed in previous work.

To create a prediction grid (analogous to Fig. 8b), we

use the following procedure.

1) Apply a Gaussian smoother to each of the three

NARR fields5 (u, y, and uw). Without smoothing,

the derivatives computed in step 2 are very noisy.

See Figs. 9a and 9b.

2) Compute the TFP [Eq. (1) with t5 uw] at each

unmasked grid cell (Fig. 6c). See Fig. 9c.

3) Compute the locating variable [Eq. (10)] at each

unmasked grid cell. Here, jTFPj is the absolute value

of TFP (Km22); v5 (u, y) is the horizontal wind

vector (ms21); v � =̂uw is the horizontal wind speed

in the direction of the thermal gradient, where positive

values indicate cold-air advection and negative values

indicate warm-air advection; and LV is the locating

variable (Km21 s21; see Fig. 9d):

LV5 jTFPjv � =̂u
w
. (10)

4) Determine the front type at each grid cell. This is

based on two thresholds: LVcold
* , which is percentile

FP of all positive values in the grid, and LVwarm
* ,

which is percentile (12 FP) of all negative LV values

in the grid. FP is an input parameter, and the label

(P) for each grid cell is determined by Eq. (11):

P5

8><
>:

CF, LV$LV
cold
*

WF, LV#LV
warm
*

NF, otherwise

. (11)

The thresholds are computed independently for each

grid (time step), for the same reason that normaliza-

tion is done independently at each time step [see the

explanation following Eq. (7)]. See Fig. 9e.

5) Use binary closing6 to connect nearby WF and

CF regions. WF regions are connected only to other

WF regions, and CF regions are connected only to

other CF regions. This fills small gaps where LV does

not quite meet the threshold. See Fig. 9f.

Finally, to convert the prediction grids to objects, we

use the same procedure as in section 4b and Fig. 8.

This experiment uses all 3600 combinations of the

parameters listed in Table 8. We use smaller area

thresholds than in Experiment 2, because the baseline

method generally produces narrower frontal zones

(cf. Figs. 8b and 9f).

TABLE 8. Parameters for Experiment 3 (baseline). Smoothing

radius is the standard deviation for the Gaussian kernel; the front

percentile is FP in section 5c; andminimum front length isLstraight
* in

section 4b. When the ‘‘pressure level’’ is the surface, NARR vari-

ables used are 10-m wind and 2-m uw.

Parameter Values

Smoothing radius (km) 32, 64

Front percentile 96, 97, 98, 99

Number of binary-closing iterations 1, 2, 3

Pressure level (mb) 900, 950, 1000, surface

Minimum region area (3103 km2) 20, 40, 60, 80, 100

Minimum front length (km) 100, 200, 300, 400, 500, 600,

700, 800, 900, 1000

5 In a separate experiment we tried ensembling NFA grids

computed for three different thermal variables: T, q, and uw.

However, the final validation CSI (0.2285) was the same in the

experiment shown, to the fourth decimal point.

6 https://scikit-image.org/docs/dev/api/skimage.morphology.

html#skimage.morphology.binary_closing.

AUGUST 2019 LAGERQU I S T ET AL . 1151

Unauthenticated | Downloaded 12/28/22 07:39 PM UTC

https://scikit-image.org/docs/dev/api/skimage.morphology.html#skimage.morphology.binary_closing
https://scikit-image.org/docs/dev/api/skimage.morphology.html#skimage.morphology.binary_closing


FIG. 10. Validation results for Experiment 1. Each panel corresponds to one per-

formance metric and one dropout fraction, indicated in the title. Labels on the y axis

indicate predictor variables; ‘‘all’’ means u, y, T, q, uw, and Z.
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6. Experimental results

a. Results on validation data

Validation results for Experiment 1 are based on

1 million examples drawn randomly from the valida-

tion period (Table 3). The same 1 million examples

are used for each CNN, to ensure a fair comparison.

Similarly, validation results for Experiment 2–3 are

based on the same 1000 time steps drawn randomly

from the validation period. Also, results for Experi-

ments 2–3 are based on a 250-km neighborhood dis-

tance (section 4c). We also ran the experiments with a

FIG. 11. Validation CSI for Experiment 2. Each panel corresponds to one determinization threshold [pNF* in Eq. (8)], indicated in

the title.
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FIG. 12. Validation CSI for Experiment 3 with 32-km smoothing radius and 900-mb pressure

level. Each panel corresponds to one front percentile (FP in section 5c) and one number of

binary-closing iterations, indicated in the title.
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100-km neighborhood distance (Fig. 13), resulting in

much worse performance.

Results shown in Fig. 10 are based on deterministic

predictions, using the determinization threshold [pNF* in

Eq. (8)] that yields the highest validation Gerrity score.

All four metrics—accuracy, Heidke, Peirce, and Gerrity

scores—tend to increase with grid size. This suggests that

larger grids—333 33 and 253 25, which are 800km 3
800km and 1056km 3 1056km, respectively—contain

more useful information than the smaller ones. This is

perhaps because fronts have varying strength (e.g.,

thermal-gradient magnitude or thermal advection) along

their length. If a small grid contains only the weakest part

of a front, the CNN may fail to identify the front. How-

ever, if the grid is expanded without changing its center

point, the CNN might use information near the edges to

identify that a front passes through the center grid cell,

even if the front is weaker at that location.

The four metrics also improve as dropout fraction

increases from 0.25 to 0.5, which suggests that overfitting

occurs easily for our dataset and needs to be strongly

mitigated. Finally, there is no discernible overall trend in

performance with respect to the predictor variables.

However, it is interesting that the two best models

(those with the highest Gerrity scores) do not include uw
as predictors. The other four models with the same grid

size (333 33) and dropout fraction (0.5), all of which

include uw, perform worse than the top two. This sug-

gests that, although uw has been used in many studies of

numerical and manual frontal analysis (section 1), it is

not prioritized by WPC meteorologists.

The number of weights per CNN varies from 127 835

(for 93 9 images with 3 predictors) to 2 187 203 (for 333
33 images with all 6 predictors). After downsampling

(section 5a), there are 17 880 115 training examples. For

the largest CNN the ratio of examples to weights (;8)

may be too small, causing their poor performance (top-

right grid cell in each panel of Fig. 10).

ForExperiment 2 (Fig. 11), CSI generally increaseswith

lower pNF* , the determinization threshold inEq. (8). Lower

pNF* is more restrictive (results in more NF grid cells, so

fewer WF and CF grid cells). CSI also decreases with

minimum front length (L*
straight

in section 4b), suggesting

that a less restrictive value is better. Finally, for pNF* 5
0.411 (the best determinization threshold for both Ex-

periments 1 and 2), the best CSI occurs for a minimum

region area of 0.3–0.4 millionkm2. However, the location

of this maximum changes with pNF* , increasing to 0.7

millionkm2 for pNF* 5 0.811. This suggests that higher (less

restrictive) pNF* values need to be offset with higher (more

restrictive) minimum areas, which makes sense because

high pNF* values result in very large frontal regions.

The region of the parameter space with highest CSI

(yellow pixels in Fig. 11) also tends to have the best fre-

quency bias (near 1.0), which means that the number

of predicted fronts is close to the number of actual

fronts. The frequency bias before object conversion

(for the best CNN from Experiment 1) is .10, be-

cause the CNN makes frontal regions too wide

(Fig. 8b), but this is mitigated by object conversion,

mainly skeletonization (Fig. 8d).

For Experiment 3, the best smoothing radius and

pressure level are 32 km and 900mb, respectively. This

suggests that NFA performs better with data farther

aloft, which require little smoothing, than with more

heavily smoothed data near the surface. As mentioned

in section 5a, an earlier experiment obtained the op-

posite result for CNNs: CNNs trained with 1000-mb

data outperformed those trained with 900 and 950mb.

This suggests that CNNs handle noisy data better than

NFA, which is not surprising. A known property of

deep learning is its robustness to noisy data (Krause

et al. 2016), while a known property of expert systems

is their lack thereof (Ravuri et al. 2018).

Figure 12 shows results only for the best smoothing

radius and pressure level, since showing all radii and

pressure levels would require 84 more panels. CSI in-

creases with minimum region area and minimum front

length, so more restrictive values of these parameters

FIG. 13. Performance diagram (Roebber 2009) for the best CNN

from Experiment 2, and best NFA model from Experiment 3, on

testing data. Results are shown for both 100- and 250-km neigh-

borhood distances. Dashed gray lines show frequency bias. All

quantities shown (POD, success ratio, frequency bias, and CSI) are

defined as in Eqs. (A5)–(A8). Error bars show the 99% confidence

interval, determined by bootstrapping (Efron 1979) the testing set

1000 times.
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are preferred. This makes sense, given that the NFA

method used to label each grid cell (section 5c) generally

results in noisier fields than the CNNs (cf. Figs. 8 and 9),

so only very large regions are likely to be actual fronts.

Also, CSI increases with decreasing (less restrictive)

values of FP (front percentile in section 5c). Thus, the

baselinemethod generally performs better when theNFA

parameters (used to label individual grid cells) are less

restrictive, resulting in overprediction that is mitigated

by object conversion with more restrictive parameters.

Finally, CSI is maximized with two iterations of binary

closing (section 5c), which suggests that two is just

enough to join nearby regions that are part of the same

front. By manual inspection, we found that three iter-

ations often join regions corresponding to completely

different fronts, which reinforces that two is a happy

medium.

b. Results on testing data

Testing results are based on 1000 time steps, randomly

drawn once from the testing period (Table 3). Figure 13

shows testing results for the best methods (those with

the highest validation CSI) from Experiments 2 and 3.

The CNN outperforms NFA, at the 99% confidence

level, in all performance metrics except frequency bias.

Figures 14–15 compare the WPC fronts, best CNN

with object conversion (from Experiment 2), and best

NFA method (from Experiment 3) for four random

times in the testing period. The times in Fig. 14 are

from Fig. 5, where the WPC fronts have a lot of fine-

scale detail and are inconsistent over time. Figure 15

shows more typical cases, where the WPC fronts

contain less finescale detail (except that in the west-

ern United States) and are more consistent over

time. Subjectively, gridded probabilities from the

CNN match the WPC fronts better than gridded

predictions from NFA or either set of predicted ob-

jects. Also, the CNN generates many fewer small

regions than NFA (e.g., from 208 to 408N in the Pa-

cific). This is probably because NFA is based on local

gradients, while the CNN is based on convolution at

different resolutions (Fig. 2), so the CNN considers a

FIG. 14. Predictions of the best CNN (from Experiments 1 and 2) and best NFA method (from Experiment 3) for two time steps.

(a) Predictors at 0000 UTC, formatted as in Fig. 5. (b) NFA predictions for 0000 UTC. WF predictions are in red; CF predictions are in

blue; gridded predictions are in the color fill; and predicted objects are shown with thick lines. Gridded predictions are deterministic.

(c) CNN predictions for 0000 UTC, formatted as in (b), except that gridded predictions are probabilistic (see color bars). (d)–(f) As in

(a)–(c), except for 0300 UTC.
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wider local context than just neighboring grid cells.

When the CNN and WPC disagree, often the CNN

prediction can be justified with reference to the pre-

dictors. For example, at 0000–0300 UTC (Fig. 14),

the CNN and WPC disagree by several hundred

kilometers on the cold front in the eastern United

States. The predictors (wind shift and thermal gradients)

support the CNN’s frontal position, which is farther east.

Surface fields (on which theWPC bulletins are explicitly

based) are similar to the 1000-mb fields (cf. Figs. 5a,b

and 5d,e).

The CNN and WPC also commonly disagree on short

fronts. One example is the two WPC fronts in the east-

ern Pacific at 0000 UTC (Fig. 14), which the CNN con-

siders one front. Also, the object conversion often

produces fronts with unusual shapes, such as the very

long cold front in the Atlantic (Fig. 14). Finally, the

object conversion often produces fronts with unusual

shapes, such as the very long cold front in the Atlantic

from 0000to 0900 UTC and cold front in the Canadian

prairies at 0900UTC that mostly passes through areas of

low gridded CF probability. Overall, the results suggest

that object conversion is a more fruitful avenue for

improvement than the CNN.

7. Summary and future work

We used convolutional neural nets (CNN) to iden-

tify warm and cold fronts. The predictors were small

1000-mb grids of u, y, T, q, uw, and/or Z. The target was

the human label (no front, warm front, or cold front) at

the center grid cell. We also developed a novel method

to convert probability grids (the raw CNN output) to

objects (polylines defining warm and cold fronts). We

conducted experiments to find the best CNN parame-

ters, the best object-conversion parameters, and the

best numerical frontal analysis (NFA) method.

The outputs of Experiments 2 and 3—the best CNN

and NFA methods with object conversion—were

compared on testing data. The CNN dramatically

outperformed NFA (Fig. 13). We used our own NFA

method as the baseline because, to our knowledge, no

previous work in NFA has published code or evaluated

their method on more than a few examples. It is pos-

sible that another NFA method could perform com-

parably with our CNN. However, we believe that this

study is sufficient to establish deep learning as a viable

tool for front detection. To our knowledge, two pre-

vious studies have used deep learning (both CNNs) to

FIG. 15. As in Fig. 14, but for different time steps.
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detect fronts. Racah et al. (2017) use an NFA method,

rather than WPC bulletins, to create labels. Kunkel et al.

(2018) use the WPC fronts as labels, but their pre-

sentation suggests that they match every predicted front

with an actual front, regardless of distance. Thus, our

results cannot be compared with either of these studies.

Our system could be used formany purposes, such as a

spatial climatology of frontal occurrence and properties,

or quantifying the spread in frontal properties across

members of a numerical weather prediction (NWP)

ensemble. With further development our system could

also be used to evaluate NWP models with respect to

frontal properties (e.g., identify biases in translation

speed or strength). Future work will focus on improv-

ing the object-conversion method (e.g., the problems

discussed in section 6b) and investigating the CNN’s

sensitivity to the source of labeled data (e.g., train with

fronts drawn bymeteorologists at another office). Also,

we hope to try learning from 3D data and time series,

which, although much more computationally expen-

sive, could improve predictions further.
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APPENDIX

Performance Metrics

a. Performance metrics for gridcell-wise evaluation

Performance metrics for gridcell-wise evaluation are

defined in the following equations:
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where variable nij is the number of examples where

the ith class is predicted and jth class is observed

(Table 5); N is the total number of examples; K5 3 is

the number of classes; n(Pk) is the number of exam-

ples where the kth class is predicted; n(yk) is the

number of examples where the kth class is observed;

and (1/N)�k

r51n(yr), used to define ak in Eq. (A4), is

the cumulative observation frequency of the first k

classes.

b. Performance metrics for object-based evaluation

Performance metrics for object-based evaluation are

defined in the following equations:

POD5
n
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n
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1 n
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, (A5)

success ratio5 SR5
n
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n
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1 n
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, (A6)

frequency bias5
POD

SR
, and (A7)

CSI21 5POD21 1 SR21 2 1, (A8)

where nPTP is the number of predicted fronts matched

with an actual front (‘‘prediction-oriented true posi-

tives’’); nOTP is the number of actual fronts matched

with a predicted front (‘‘observation-oriented true pos-

itives’’); nFP is the number of predicted fronts not

matched with an actual front (false positives); and nFN is

the number of actual fronts not matched with a pre-

dicted front (false negatives). The matching is based on

a neighborhood distance (section 4c). Equations (A5)–

(A8) are used by the National Weather Service to verify

tornado warnings (Brooks 2004, p. 1), another setting in
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which negative examples (‘‘nontornadoes’’) are difficult

to define.
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